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LETTER TO THE EDITOR 

Tunnelling through quantum-dot systems: a study of the 
magneto-conductance fluctuations 
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t Centre for the Physics of Materials, Depmment of Physics, McCill University, Montreal, 
Quebec, Canada H3A 2T8 
$ Department of Physics, North Carolina State University. Raleigh, NC 27695, USA 

Received 18 January 1994 

Abstract We report on a theoretical shldy of ballistic transpolt of electrons through two- 
pmbe quantum-dot systems in the tunnelling regime. Large aperiodic conductance fluctuations 
are observed as a function of the external magnetic field and the electron energy. We analyse 
the magnetic field correlation functions of the conductance fluctuation for both a stadiumshaped 
dot and a rectangular dot and h d  that they are qualitatively different. The correlation function 
of the stadium-shaped dot agrees well with the semi-classical chaotic-scattering theory, while 
that of the rectangular dot does not. 

Recently, in an interesting experiment, Marcus eral [I] measured the conductance of a two- 
dimensional stadium-shaped quantum dot, connected to the outside by two point contacts, 
as a function of the magnetic field. The size of the dot was such that transport was 
in the ballistic regime. Large aperiodic conductance fluctuations were observed at low 
fields of up to a few thousand Gauss. A resistance peak was also found at zero magnetic 
field and related to the coherent backscattering of electrons. It is of particular interest to 
study and understand the origins of the conductance fluctuations observed in submicrometre 
semiconductor structures such as quantum dots, because such structures are the building 
blocks of future and current electronic devices [2]. From a theoretical point of view, the 
semiconductor structures provide, as the experiment of Marcus et a1 showed, a testing 
ground for theories and ideas in the intriguing field of ‘quantum chaos’ [3, 41. 

Although there is no rigorous and unique definition of quantum chaos, it generally refers 
to quantum systems whose classical analogue is chaotic, such as a stadium-shaped quantum 
dot [ S ,  61, or quantum systems whose eigenvalue spectrum satisfies Dyson ensembles 171, 
such as the Anderson model. For closed systems, quantum chaos is studied by solving 
the one-particle Schrodinger equation, and characterizing the statistics of the energy levels 
[7]. For open systems, such as the devices studied by Marcus et al, one is dealing with 
a problem of scattering of charge carriers by some peculiar boundary, under the influence 
of an extemal magnetic field and possibly other effects. In this case much progress and 
insight have been achieved by studying the statistical properties of conductance fluctuations 
[8, 9, IO, 11, 12, 131. 

In this letter, we report on numerical calculations of the magneto-conductance for a 
chaotic and a regular structure. We computed the magneto-conductance in the quantum 
tunnelling as well as in the transmitting regime for the two structures. The chaotic sfmcture 
considered was a stadium-shaped quantum dot similar to that of Marcus and coworkers 
[I], while the regular structure studied was in the shape of a rectangle. We focus on 
the properties of the conductance fluctuation as an external magnetic field is varied. By 
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analysing the correlation function of the fluctuations, we found that these fluctuations show 
some qualitative differences depending on the structure shape: the fluctuations for the 
stadium-shaped dot compare reasonably well with the predictions of the semi-classical 
theory for chaotic scattering, while those of the rectangle do not. These results suggest 
a novel way of probing chaotic scattering in submicrometre structures. 

We focused on the conductance fluctuations in the tunnelling regime for several reasons 
[14, 151. First, present understanding of quantum chaos is based on the eigenenergy-level 
statistics of closed billiards. These levels become quasi-bound states when the stadium 
structure becomes open. In the tunnelling regime the energies of the transmission peaks 
are closely related to the quasi-bound states, which mediate the resonance transmission. 
Furthermore, conductance fluctuations are known to arise fiom the complex scattering of the 
electron from the boundary and are therefore related to the specific geometly of the structure. 
It therefore seems important to bap the electron inside the structure for a sufficiently long 
period of time to reveal the possible chaotic scattering nature of the structure. A simple 
way to increase the trapping time of the electron is via the use of tunnelling bniers  at the 
openings of the quantum dot. An alternative way of achieving this is to reduce the size of 
(pinch off) the point contacts of the quantum dot 1161. 

Before presenting details of our calculations, we briefly summarize the predictions of 
semi-classical scattering theory. A universal form for the energy correlation function C(Ak) 
of the conductance fluctuations Sg for a two-probe chaotic stadium in terms of the the wave 
vector k = ( h E / k ) ' / *  was previously obtained [13, 171, C(Ak) = C(O)/[l + (Ak/y&, 
where C ( A k )  = (Sg(k + Ak) 6g(k) )  averaged over an appropriate k interval and KI is 
a constant. If a measurement is performed using the magnetic field as the tunnelling 
parameter, semi-classical theory [8, IO] predicts a universal form for the magnetic field 
correlation function of the conductance fluctuations. For a two-probe chaotic system it 
gives 

C(AB) = C(O)/[l + (AB/a@o)*]' (1) 

assuming an exponential distribution N(A) of areas A enclosed by classical trajectories in the 
structure [SI: i.e., N(A) a exp(-kculAl) with a a constant. Conductance measurements in 
the fully quantum regime [ I ]  and a quantum-mechanical calculation of magneto-conductance 
[8] have been carried out to test these semi-classical formulas. Good agreement was found, 
even for cases where the mode number of the propagating electron is low. More recently 
Marcus et al measured the conductance fluctuations in the weakly tunnelling regime for a 
stadium-shaped structure and found that the magnetic field correlation function is similar to 
that observed in the transmitting regime [181. 

The two-dimensional quantum dots we studied are shown later as insets in figure 2. 
In the ballistic-transport regime it is sufficient to consider the electron scattering from 
hard confining walls. The whole system, including the leads, is within a uniform external 
magnetic field B, which points perpendicularly to the x-y plane of the quantum dot. We 
assume that the electron enters f" lead I and exits from lead II. The dimensions of the 
quantum dots are as follows. Rectangle: width L I  = 0.3 pm, length LZ = 0.3788 pm; 
stadium: radius 0.15 pm, width L I  = 0.3 pm, and the length of the rectangular part is 
Lz = 0.15 pm. All lead widths are W = 0.15 pm. The width of the potential barrier layer 
is 150 A. The barrier height is chosen to be three times the incident electron energy. Note 
that the areas of the two dots are the same. 

To calculate the transmission coefficient of a single electron through the structure, we 
used a finite-element boundary-matching scheme 119, 201. The system was divided into 
two parts: the leads, and the dot (including the barriers). The Schriidinger equation in 
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the dot region was solved using a finiteelement triangular discretization [19, 201, while 
in the leads it was solved using appropriate combinations of Kummer functions [Zl]. The 
wave functions and their spatial derivatives were then matched at the boundaries. This 
procedure gave the transmission and reflection coefficients, which were then used to obtain 
the conductance using the Landauer formula [221. The method also gives the wave function 
everywhere in the system. 

B (Gauss) 

um 
B (Gauss) 

Figure 1. The conductance g(B) versus lhe magnetic field E for (a) the stadium-shaped dot 
and (b) the rectangular dot. 

As mentioned above, the transmission in the tunnelling regime is of resonance nature. 
These resonances are mediated by the quasi-bound states inside the quantum dots. They 
become bound states when the quantum dots are closed [23]. These quasi-bound-state 
energies must be related to the intrinsic nature of the level statistics of the corresponding 
closed system. It is well known that for a regular structure such as the rectangular dot, the 
energy level spacings satisfy Poisson statistics [3] where the probability of finding levels 
of close energy is high. For a classically chaotic stadium-shaped dot, the spacings satisfy 
a Wigner distribution [3]. Indeed, we found qualitatively similar behaviour in the open 
system: for the rectangular dot some conductance peaks are extremely close to each other 
and many overlap substantially, which indicates the near-degeneracy or degeneracy of the 
energy levels of the corresponding closed system. For the stadium-shaped dot, the peaks 
are more separated &om each other due to the lack of degeneracy among the energy levels 
of the closed system. Thus, in the tunnelling regime, the behaviour of the conductance is 
related to the level statistics of the closed system [24], as expected. On the other hand, 
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as the system is made more transmissive by removing the tunnelling barriers, the resonant 
peaks merge, making it difficult to make a direct connection between the levels of the open 
and closed systems. 
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Figure 2. The magnetic field conelation function C ( A E )  versus magnetic field AB for (a) the 
stadiumshaped dol and (b) h e  rectangular dot (see the insets). Here the solid lines are from our 
dculalion and dotted lines correspond lo the semi-classid lheoly. The dimensions of the dofs 
are as follows. SMium: radius R = 0.15 p a  width L I  = 2R = 0.3 pm, and lhe length of 
the rectangular part is L2 = 0.15 pm, rectangle: widlh L, = 0.3 pm, length L? = 0.3788 pm. 
NI lead widths are W = 0.1s pm. The width of the potential b&r layer (shaded region) is 
IS0 A. 

Experimentally it is easier to use the magnetic field as a control parameter. Figure 
1 shows the conductance of the dots as a function of the magnetic field B.  We have 
fixed the electron energy to be just above the third zero-field subband energy of the leads, 
kW = 9.5. Similar to the findings of Marcus et al. large aperiodic conductance fluctuations 
are observed for both the rectangular and the stadium-shaped structures. To study the 
statistics of the conductance fluctuations we have calculated the magnetic field correlation 
function C(AB)  = @g(B + A B )  6g(B)) .  The results are shown in figure 2(a) for the 
stadium-shaped dot and figure 2(b) for the rectangular dot. Conductance fluctuations & ( E )  
were extracted from g ( B )  by subtracting a smoothed average of g ( B ) .  The correlation 
functions predicted by the semi-classical theory (1) are shown as the dotted lines in figure 
2. Figure 2(b) shows that data for the regular structure, i.e., the rectangular dot, do not 
agree with the semi-classical prediction. However, for the stadiumshaped dot, our data 
fit reasonably well with the prediction for a range of AB values, as shown in figure 
2(a). The oscillation around the semi-classical result in the tail of figure 2(a) can be 
understood as originating from non-universal interference effects [8]. This suggests that, at 
least in the tunnelling regime, the universal signature of ‘quantum chaos’ can be detected by 
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measuring the conductance fluctuation. Moreover, the statistic properties of the conductance 
fluctuations behave quite similarly to the results predicated by the semi-classical theory. This 
is also consistent with the experimental observation [IS]. 

0 3% 700 0 3-50 7m 
f (Cyclesflesla) f (Cycles/Tesla) 

Figure 3. The averaged power specmm of ule conductance fluctuation S,(f) VMUS magnetic 
‘hquency’ f for the stadium-shaped dot (solid squares) and the rectangular dot (open circles). 
For comparison. we plot S,(n versus f for the situations where tunnelling barriers are present, 
in the left panel, and where the barria are removed, in the right panel. 

It is useful to examine the averaged power spectrum of the conductance fluctuation 
S,(f) by taking a Fourier transform of the magnetic field correlation function. Here f is 
the magnetic ‘frequency’ in units of cycles T-’. This helps to reduce the non-universal 
low-frequency contribution to the correlation function [SI. The left panel in figure 3 shows 
S,(f) for the stadium-shaped dot (solid squares) and the rectangular dot (open circles). 
Again we find that the sets of data behave differently, consistently with the behaviour 
observed experimentally [I], despite the fact that the experiment was performed in the 
transmitting regime. For the latter case this behaviour has a good explanation in terms of 
semi-classical theory, as discussed in [l ,  12, 91. 

When the tunnelling barriers are removed, the systems become quite transmissive 
because of the relatively large probe width chosen (as compared with the quantum-dot 
dimensions). As mentioned above, in this case the resonant nature of the wansmission is 
less directly related to the eigenenergies of the corresponding closed systems. The openness 
of the structure gives a much shorter trapping time for the electron. Therefore, in this 
situation, we do not expect chaotic scattering of the electron in the stadium-shaped dot to 
play an important role. The right panel of figure 3 shows the averaged power spectrum 
when no tunnelling barriers are present Clearly, !he differences between the two sets of 
data are much smaller than those in the tunnelling regime. 

In summary we have studied magneto-conductance for both rectangular and stadium- 
shaped quantum dots in both the presence and the absence of tunnelling barriers at the 
leads. In the tunnelling regime, the eigenenergies and the statistical properties of the 
conductance fluctuations for the open and closed systems are related. Similar to experimental 
measurements, we observed Iarge aperiodic conductance fluctuations for both structures at 
low magnetic fields. However, these fluctuations give rise to quite different correlation 
functions. For the stadium-shaped quantum dot the correlation function agrees well with the 
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semi-classical chaotic-scattering theory, while for the rectangular dot there is no agreement. 
Without the barriers, the openness of our structures makes chaotic scattering non-essential. 
In this case the averaged power spectra of the two smctures are quite close to each other. 
Thus, at least in the tunnelling regime, the statistical properties of the conductance fluctuation 
of the classically chaotic stadium-shaped structure can be detected and the importance of 
chaotic scattering studied. Finally we note that the tunnelling regime has no classical 
analogue, and thus the applicability of the semi-classical theory is questionable. However, 
given that our data seem to confirm the semi-classical predictions in this regime, further 
theoretical investigation is needed to clarify this situation. 

We thank Professor B Altshuler for very useful discussions. This work was suppoaed by 
the Natural Sciences and Engineering Research Council of Canada and le Fonds pour la 
Formation de Chercheurs et 1’Aide A la Recherche de la Province du Qu&ec. 
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